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$ Institute of Mathematics, University of Lodz, ul. Banacha 22, 90-238 Lodz, Poland 

Received 18 April 1988 

Abstract. Using the exact solutions of the Schrodinger equation previously given by Froman 
and Froman and by Giler et a/, we calculate the energy of the ground state for polynomial 
superpotentials with broken supersymmetry and with an arbitrary number of wells. Our 
method gives a result which, having a general form in accordance with that given by 
Salomonson and Van Holten and by Giler et a / ,  is asymptotically precise, revealing features 
characteristic of supersymmetric potentials. 

1. Introduction 

The WKB method provides a very efficient way of calculating some relevant quantities 
in quantum mechanics. When applied to the problem of finding the energy eigenvalues 
E it results in an asymptotic expansion in inverse powers of n. Such an expansion, 
valid in principle for large n, is surprisingly accurate even for lower-lying eigenstates. 
Its accuracy grows very rapidly with n (Hioe e ta l  1978). In many cases one obtains 
an asymptotic expansion in integral powers of h, valid for any eigenvalue, which is 
often closely allied to the usual pertrubative expansion (Froman and Froman 1965, 
see also Fedoryuk 1983). This is the case of the single-well potential V ( x )  with 
V”(xo) > 0 at the lowest point, xo, of the well. If the value E can be expanded as a 
power series in h with a finite radius of convergence, one can reconstruct this series 
by the WKB method and sum it to produce the exact solution (Bender e ta l  1977). In 
most cases, however, the series is only asymptotic (Reed and Simon 1979). It follows 
then that there are contributions which cannot be seen in ordinary WKB/perturbative 
expansions. As was shown by Balian et a1 (1979) in the context of large-hi expansions 
such contributions can be numerically quite relevant. Moreover the important theoreti- 
cal problem arises as to the identity of the non-perturbative contributions. Indeed, 
given any divergent asymptotic expansion one has to apply some summation method 
(the Bore1 method, for example) to obtain the finite answer. Any such method should 
give the same answer for convergent series but for divergent series the results can be, 
and in general are, method dependent and differ by O( h“) terms. Consequently, to 
state the problem properly, i.e. to define the non-perturbative, subdominant contribu- 
tions to the energy E (  h )  possessing an asymptotic expansion 

E ( h ) -  1 a k h 2 k  
k=O 

it is necessary to select the method by which to sum the above series. If E ’ ( h )  is the 
value ascribed by this method to Z k s O  ( - u k h 2 k  one can define the subleading contribution 
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as the asymptotic value of E (  h )  - E’( A )  (Balian et a1 1979). In principle this procedure 
can be pursued further to give the complete expansion with the successive subdominant 
contributions (see Balian et a1 (1979) for a very elegant discussion). There are some 
cases, however, when the non-perturbative contributions can be unambiguously deter- 
mined, because in such cases the above contributions give rise to effects which, being 
qualitatively different, can be disentangled from the ‘background’ of the dominant 
series contribution. This is, for example, the case for the symmetric double-well 
oscillator. The perturbative (or equivalently single-well WKB) expansion for each well 
is exactly the same; all levels are doubly degenerate and no splitting is possible. Any 
summation method applied to those series would give the same result. However, there 
are non-perturbative contributions due to tunnelling that produce level splitting of 
order exp( -constant/ h ) .  This splitting can be calculated unambiguously in the 
dominant order as, for example, in Landau and Lifshitz (1965). 

As a second example let us consider the metastable states (false vacua). They are 
stable to any order in the perturbative/single-well WKB expansion; the energy eigen- 
values are real in this approximation. Any reasonable summation procedure will 
preserve this property. Only the non-perturbative corrections contribute to the 
imaginary part of the energy as they are responsible for the decay. Again they can be 
calculated in spite of the fact that the dominant contribution to the (real part of the) 
energy is only known to some crude approximation (in comparison with the imaginary 

Another example which will be investigated below is provided by supersymmetric 
quantum mechanics. It is well known that for some cases (SUSY unbroken at the tree 
level), due to peculiar fermion-boson cancellations, there are non-perturbative correc- 
tions to the ground-state energy (GSE). Therefore the perturbative series is trivially 
convergent-to zero. Consequently one should be able to evaluate the GSE by means 
of the WKB-like method. We do this below. 

Although such calculations seem to be worthwhile on their own it is perhaps more 
important that they enable us to investigate a general SUSY potential as well as offering 
a more precise estimate of the GSE than had been obtained previously (Salomonson 
and Van Holten 1982, Giler et a1 1985). 

We must, however, stress that our approach is more sophisticated than the usual 
WKB approximation itself. There are at least of two kinds of reason for this. The first 
is that the usual WKB method is, in principle, the expansion in h when h + 0 together 
with the constraint nh =constant, i.e. it enables one to calculate rather high energy 
levels ( n  + CO). On the other hand, even if we relax this restriction, i.e. if we put n = 0 
in the WKB quantisation conditions (see Giler (1988) for a discussion of the validity 
of this procedure), we simply get zero for the GsE-a result which is still unsatisfactory. 

The second reason is that we want to calculate the GSE for the many-well superpoten- 
tial with an arbitrary number of wells. In such a case it appears to be incorrect to 
make use of the usual WKB approximation for the wavefunctions to match them when 
going from one well to another (this point will become clearer in Q 4). On the other 
hand such a matching procedure is necessary in order to establish the proper quantisa- 
tion rules for the energy. Consequently we are forced to start from the original Froman 
and Froman (1965, hereafter referred to as FF) form of the solution to the Schrodinger 
equation (SE)  from which the WKB formulae follow directly. 

However, we should also mention here that the FF form of the solutions to the SE 

is not the only one used in our calculations of the GSE. We also utilise for this purpose 
another type of solution to the SE with a supersymmetric potential, as found in our 

part). 



Broken SUSYQM ground-state energy 649 

previous paper (Giler et al 1985). These solutions can be defined in the same regions 
as the FF solutions (see appendix 1, where we quote them briefly). However, in contrast 
to the latter, which are asymptotic for h -f 0, these ‘purely’ supersymmetric solutions 
are instead asymptotic for h +a. In the case when the energy E vanishes, however, 
they become relatively simple in their dependence on h. Contrary to this the FF 

solutions still remain rather complicated functions of h even for E = 0. Since the point 
E = 0 is where we perform our main calculations, we make extensive use of these 
simpler, ‘purely’ supersymmetric solutions. 

We consider in this paper a general superpotential V(x) of the polynomial type 
which generates the supersymmetric Hamiltonian in the usual manner (Witten 1981, 
Solomonson and Van Holten 1982, Giler et al 1985). Applying the FF method to solve 
the problem of the GSE we arrive at the result 

where z: and z i  denote those maximum and minimum values of V(x) which maximise 
the difference V(z;) - V(zJ under the condition that the minimum is always to the 
right from the maximum (this kind of asymmetry is directly connected with our choice 
of the superpotential for which V ( + a )  = +CO). Therefore, although the form of our 
present answer is the same as previous results (Giler er al 1985) its meaning is different. 
It is seen that the above condition which relates the suitable extrema present in (1) 
cannot be inferred from the double-well case considered by Salomonson and Van Hol- 
ten (1982). It also corrects our previous result (Giler er a1 1985). In fact, it expresses 
a characteristic property of supersymmetric one-dimensional quantum mechanics. We 
give a simple explanation for this phenomenon at the end of § 3. 

Our paper is organised as follows. In § 2 we describe the FF approach. Then in 
§ 3 the GSE for the many-well SUSY potential is calculated, and our results are discussed 
in $4.  

~,-(h/2.ir)l~”(z:)~”(zk)1~’~exp[-(2/h)( v(z:)- ~ ( z i ) ) ]  (1) 

2. The Froman and Froman form of the solution to the Schrodinger equation 

Let us assume for simplicity that the potential U(x)  is an entire function of x and 
real for real x. We also assume that the spectrum is purely discrete, i.e. U ( x )  + +colxl+ 
+CO. The Schrodinger equation 

can be written in the form 
[(-h2/2m)(d2/dx2) + U(X)]+(X) = E+(x) 
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where 

4 . Y )  = i[4”(Y)/  43’2(Y) - 3 4 ’ ( Y ) ) 2 /  P 2 ( Y  11. ( 5 )  
In (4) the integration path 7- ( y , )  starts from infinity and goes to yi in such a way 

as to ensure that Re S(xo, yi+]) varies monotonically along the whole path. Moreover, 
Re S(x,, yi+l) + Fa for U = *I when yi+] +CO along the path. 

A very important point is that the series in (4) is convergent (not only asymptotic) 
provided the paths y‘ are chosen as above. The asymptotic WKB expansion valid for 
h + 0 can be obtained from (4). However, equation (4) clearly contains more informa- 
tion than the asymptotic series it produces. We make use of this fact later in this paper. 

A convenient way to describe the domains of validity of the representations (3) 
and (4) is to draw a so-called Stokes graph ( s G ) .  Such a graph consists of the Stokes 
lines (SL) given by Re S(xo, x) = 0 for all roots xo of q ( x ) .  Every system of SL divides 
the whole complex x plane into a set of disjoint pieces. Solutions of the form given 
by (3) and (4) can be constructed in each piece that contains +cc or -a of Re S(xo, x) 
and in each such piece it is uniquely (up to a constant) determined by the condition 
that it must vanish as x + CO in this piece. It can be analytically continued, with the 
help of (3)-(5), to those pieces to which the path can be continued. In all such pieces 
it grows exponentially. Moreover, any two solutions of the form (3) and (4) coming 
from different pieces are linearly independent. This fact is the obvious consequence 
of their asymptotic behaviour described above. 

3. The SUSY ground-state energy 

We follow here the conventions of Giler et a1 (1985). Let us consider the case of 
broken (but unbroken at the tree level) SUSYQM given by the superpotential 

2 n + l  

V ( x ) =  akxk a2n+l ’  0 
k = O  

the zeros of which are real (see figure 1). The corresponding Hamiltonians can be 

Figure 1. The superpotential V ( x )  and its potential U - ( x ) .  
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written as 

H,= -(h2/2m) d2/dx2+f(  V’(~))~TffhV”(.x).  (7) 
Both these Hamiltonians have the same spectrum. For definiteness we choose H-.  Its 
potential U - ( x )  is depicted in figure 1. 

We know (Salomonson and Van Holten 1982, Giler et a1 1985) that the GSE E,, is 
positive and of the order of exp(-constantlh). Consequently it lies above the x axis, 
but below any positive local minimum of U - ( x ) .  Let us denote the real roots of the 
polynomial q ( x )  = 2( U-(x) - Eo)/  h by a k ,  bk,  with k = 2, . . . , n + 1, and denotes its 
complex conjugate roots by c k ,  E k ,  k = 1, . . . , n. Then the SG corresponding to the case 
under consideration is as sketched in figure 2. It should be noted that the length of 
the segments ( a k ,  bk )  and ( c k ,  ? k )  are of the order fi l l2.  Further, each zero of q(x)  is 
a branch point for the functions q 1 ’ 2 ( x )  and q-” ‘ (x) .  So the arguments of q(x)  written 
on both sides of the real axis of the x plane serve to give the steps in q 1 ’ 2 ( x )  and 
q-’ l ‘ (x) at the appropriate intervals of the axis (see figure 4). Let us note also that 

I 
Figure 2. The Stokes graph for the potential U - ( x ) .  The possible y paths of analytic 
continuations are also indicated. 

Figure 3. The y paths in the S planes. The straight lines represent cuts. 
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i; 

I 
Figure 4. The y paths in the S planes, with $J = arg q ( x ) .  

the maxima z: of the corresponding superpotential V ( x )  are .xalised in ..gure 2 in 
the vincinity of the ( c k ,  C k )  segments and its minima z ,  are localised inside the intervals 
( a k ,  bk ) .  From each minima z i ,  k = 1, .  . . , n + 1 the line Im V ( x )  = 0 emerges and goes 
to the infinities a k  or 0 0 ~  of the appropriate sectors k and k: On the other hand 
Re V ( x )  remains negative along these lines, having its (negative) maxima at the 2 ; .  

Let $1,  ( L f l + 2  and $ k ,  (LE with k = 2 , .  . . , n + 1 be the solutions given in the form (3) 
and (4) in the correspondingly numbered sectors of the SG.  Now it follows trivially 
from the properties of the solutions (L1 and (Lnt2 that the quantisation condition is 

( L l ( X )  = C ( L f l + 2 ( X ) .  (8) 
However, the above condition cannot be used directly, since neither can (L1 be continued 
(with the help of the formulae (3)-(5)) to sector n +2,  nor (Lnt2 to sector 1. The only 
way to get (8) explicitly is to use chains of the solutions ( L k ,  $E with k = 2, . . . , n + 1. 
That is, we can write series of the following relations 

$1 = f f I ( L 2 + E l * 2  (Lk = a k ( L k + l + P k ( L ' 5 ; T i  

$6 = B k ( L k +  1 + c k ( L m  k = 2 , . .  . ,  n ( 9 )  

(Lfl+2 = % + l l C I f l + I  + ~fl+I(LX 

where we have made use of the consequence of the reality of the potential U - ( x ) ,  i.e. 
we have used the equations 

( L l ( X )  = I C l l ( 3  

$ E ( X )  = J k ( 3 )  k = 2 , .  . . , n (10) 

( L H + l ( X )  = IClH+l(3. 

a1 = lim ( ( L I ( X ) / ( L 2 ( X ) )  

The coefficients ( Y k ,  P k ,  k = 1 , .  . . , n + 1 in (9) can be calculated as follows: 

ak = Iim ( $ k ( x ) / ( L k + l ( X ) )  
x * O ' h + l  X'c02 
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where a k ,  COL, k = 2, . . . , n + 1, are infinity points in the appropriate sectors of the SG 

in figure 2. Equations (1 1) are consequences of the fact that all the analytic continu- 
ations needed in (11) are possible, as follows from § 2 and is shown in figures 2-4. 

The relations (9) can be conveniently written in matrix form by introducing the 
following matrices: 

We make use of (12) to transform the quantisation condition (8) into the form 

(A,.  . . An)11= C(An+1)11 (A, ' * ' An112 = C(An+1)12. (13) 

The elimination of C from (13) gives the quantisation condition in the following final 
form: 

(AIA2 * .  * An+1)12-(An+1A1A2 * .  * An112 = 0. (14) 

So far condition (14) is exact and can serve, at least in principle, as the equation 
for the energy eigenvalues. In any case it will be used to effectively calculate the GSE 

for our SUSY Hamiltonian. 
To this end let us note that each matrix Ak, k = 1, . . . , n + 1 is an entire function 

of energy and, therefore, the left-hand side of (14) has the same property. This property 
allows us to expand both the matrices Ak, k = 1, .  . . , n + 1, and the condition (14) into 
power series in Eo around the point E = 0. We have in this way: 

A ~ (  E,)  = A;+ E,A:+ E;A;+. . . k =  1 , .  . . , n + l .  (15) 

Since the value of the GSE Eo is expected to be exponentially small (in comparison 
with, say, hlV"(z;)I, where z ;  is any extremum of V(x)) we can truncate the series 
(15) at the second term and, using (14), we obtain an approximate expression for Eo 

Eo= -(AY.. . A:+, -A:+,Ay.. . A:),2 

(16) 

At this stage the inaccuracy of (16) is easily handled and A, the corresponding 
correction to Eo (which arises due to neglecting the third term in (15)), can be easily 
calculated (see appendix 3). 

Now, in order to calculate the matrices Ak, we make use of (3) and (11) to obtain 

$,(XI = inq-1 '4(~)  exp[(-1)"S(a2, X ) I ~ ~ ( X )  
$k(x) = q-1'4(x) exp[(-l)"-k+lS(ak, x)I$k(x) 

+ n + 2 ( ~ )  = ~ " ~ ( x )  exp[-S(bn+,, x ) I I c ~ ~ + ~ ( x )  
k = 2 , .  . . , n + l  (17) 

and 

a I  = i"+'yl 

a k  = i exp[ ( - 1 - k+l S + ( a k  a k +  1 ) 1 Yk 

an+1 = -i exp[-S-(b,+,, a , ,+1)1~~+l 

(18) 

P k  = i ( - l )n -k  exp[(-l)"-k+lS+(ak, ak+,)]yk k = 2 , .  . . , n 
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where 

etc, and '*' subscript of S ,  denotes the integrations in the upper or lower half planes. 
The expressions (17) and (18) are valid for any E and in particular for E = O .  

However, to obtain the a, p and y we can use the 'supersymmetric' formulae (Al .1)  
of appendix 1 instead of (17). The reason for doing so is the explicit holomorphic 
dependence of the supersymmetric solutions on energy E. They are given simply 
as power series expansions in energy E about the point E = 0 (see appendix 1 for 
details). Therefore, the matrices A?, A:, A:, . . . can be easily calculated with the help 
of the coefficients of the series in (A1.1). Use of the corresponding FF forms (17) 
would involve complicated series instead of simple integrals. 

Using the supersymmetric solutions of appendix 1 we get for E = 0: 

and 

ff : + 1 = ( c, +2 /  c, + 1 )  ( 1 / E 1 (%Ti) 1 
where the quantities I f ) ,  k = 1,  . . . , n + 1 have been defined in appendix 1 .  Of course, 
the coefficients (21) define the matrices A? in (15 ) .  On the other hand, the A: in (15 )  
can be calculated using (18) and the solutions ( A l . l )  of appendix 1 .  In this way we 
obtain (see (A1.6) and (A1.7) for details): 

where k = 2 , .  . . , , and (22) 

where all the quantities on the right-hand side of (22) are defined in appendix 1 .  Let 
us now observe that 

A ;  = c(k)B;c;i+l) r=O, 1 k =  1 , .  . . , n + l  (23) 
where 

.I.,=[" '1 k =  1,. . . , k + l  
0 c k  
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and the B;  introduced above are defined only by the integrals present in (21) and 
(22). Substitution of (21)-(23) into (16) gives 
Eo= -(BY . . . BO,+, - Bz+,B:.. . B0,)12 

The algebraic operations involved in the above formula can be performed effectively, 
leaving us with the rather simple result (see appendix 2 for details) 

k-1  

where the I k  and Dk, k = 1, .  . . , n + 1, are defined in appendix 2. 
We would like to stress at the moment that so far the above formula takes into 

account only the assumption that Eo is small in comparison with any of the quantities 
hl V”(zi)l. However, in the form (25) the formula is still rather complicated. One can 
expect some simplifications in (25) if the exact integrals were replaced by their 
approximations. The simple approximations seem to be the asymptotic forms for h + 0. 
Taking the limit we get the following estimates for the leading quantities in (25): 

I k  = exp(2V/h) d y - i ( r k / (  Vi)”)”2exp(2V;/fi) 
m k  

with the integration path r k + ]  shown in figure 2. 
The estimations (26) and (27) have been done whith the help of the saddle-point 

method by integrations along the lines Im V(x) = 0, described previously.. They are 
valid if h << I V”(zi)l(z: - zi)’= V(z:) - V(zi)  for each extremum z: of V(x) (see 
appendix 3 for details). 

Noticing now that all the terms proportional to the Qk mutually cancel, we get at 
last 

or 
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In the above formula z i  and zk ,  are such extrema of V ( x )  for which the difference 
V ( z 7 ) -  V(z , )  is maximal under the condition that k z  I, i.e. the minimum is always 
to the right of the maximum. 

The above result needs some comment. It follows that Eo is determined by the 
relative maximum of the differences V ( z 7 ) -  V(z,) defined above rather than by the 
absolute maximum. This can be easily understood as follows. Let us make some 
minimum of the superpotential V ( x ) ,  say z k ,  arbitrarily large (in absolute value). It 
causes the nearest potential barriers a, b, placed on both the sides of the minimum z k  
(see figure 1) to also tend to infinity. These two barriers divide our broken superpotential 
V ( x )  into three parts. The left and the middle parts, each having an odd number of 
extrema (2k-3 for the left and 1 for the middle) become supersymmetric in the limit 
of the infinitely growing barriers. On the other hand, in the part to the right of both 
the barriers the supersymmetry remains broken, since it contains an even number of 
the extrema. It follows then, that in the left and in the middle part of V ( x ) ,  the energy 
Eo (given by (30), where we have to put zk ,  = 2;) should vanish in the limit considered, 
while in the right part it should remain finite. It is clear that it is possible only when, 
in (30), z: is placed to the left of z k ,  rather than to the right. 

The following remarks are in order: (i) Eo as given by (30) vanishes exponentially 
for h + 0, and therefore the asymptotic approximations (26) and (27) are in accordance 
with the assumption that Eo is small; (ii) equation (30) can be applied not only to 
obtain the numerical value of Eo (under the conditions of appendix 3) but it also gives 
the asymptotic expression for Eo in the limit h + 0; (ii) equation (25) has been obtained 
using the exact solutions to the SE (i.e. not the asymptotic ones for h + 0)-the limit 
h + 0 has been taken only in the final expression (25) without any contradiction with 
the previous assumptions (see remark (i) above). 

4. Final remarks 

We conclude with some remarks. Firstly, let us note that although our result for Eo 
has the same form as found previously (Salomonson and Van Molten 1982, Giler et a1 
1985), it now has the precise meaning given above (see (30) and the comment immedi- 
ately following). It improves our earlier result obtained by another method (Giler et a1 
1985). Secondly, the result (30) would be exactly the same (as it should be), if we 
used the solutions (Al . l ) ,  taken at E =0,  from the very beginning. However, we 
preferred the FF forms instead of the 'pure' supersymmetric ones, because of the 
apparently asymptotic character of the former for h + 0. On the other hand, the use 
of the simpler asymptotic formulae for the FF solutions was impossible in our case, 
since, in the limit h + 0, their necessary analytic continuations to different sections of 
the SG became impossible (it was because the segments (ak,  bk) and (ck, Ck), through 
which these analytic continuations were going, contracted to points when h + 0 (see 
figure 2)).  

Further, it is not difficult to see that the above method can be generalised to 
superpotentials which also have complex zeros. Equation (30) gives us the exponen- 
tially small expression for the GSE. It follows, then, that the perturbative expansion 
for the GSE, being asymptotic, vanishes. This is a characteristic property of supersym- 
metry. Let us note, however, that according to the general theorems it is possible only 
if S U S Y  is unbroken at the tree level. Again the same conclusion follows from the 
formalism developed above. 
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Let us note also that our basic approximate formula (15) for the GSE clearly 
distinguishes between the broken and unbroken cases of the superpotential V(x). For 
the unbroken superpotential it gives exactly zero for the GSE as it should do, since 
zero is the exact value of the GSE in this case. On the other hand the asymptotic series 
for the GSE vanish identically in both cases. It proves, therefore, that the result (30) 
for the broken symmetry case cannot be regarded as merely a matter of chance. 

Finally, let us note for completeness that for the higher-lying eigenstates of, say, 
a double-well symmetric SUSY potential, one can deduce the usual formula for the 
energy splitting. 
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Appendix 1 

For the SE with superpotential there exists for every sector of the SG (figure 2) a 
supersymmetric analogue of the FF solution (3). Namely, we have (Giler et a2 1985) 

$k(x) = c k  exp(-V(x)/fi) 1 (-2E/fi2)'1k2'")(x) k =  l , . .  . , n + l  
r z O  

(A l . l )  

where C,, k = 1, . . . , n + 2 are some normalisation constants and 

1i2r+l)  ( X I = [ -  dy, I ; ~ ~ ~ ~ , ) d  y 2 r + ~ e x p [ 2 ( ~ ~ - ~ ~ + . . . - ~ 2 r + ~ 2 r + ~ ) / ~ 1  

k =  1, .  . . , n + 1  r = 0 , 1 , 2 ,  . . .  

dy2r ~ x P [ ~ ( V , - V ~ + *  * * +  v2r-1-V2r)/hl 
Y 3 , + z ( Y z , - I )  

(A1.2) 

I- p) n + 2  (x)  = I- d y l . .  . 

r = 0, 1,2,  . . . 
Yll+Z(X) 

with Vr = V(yr) and IIp!2(x) = 1. 
The paths f in (A1.2) are analogous to the paths y in (4). The j k  path starts from 

the k infinity and continues to the point x in such a way as to maintain Re( V ( Y ~ ~ )  - 
V(yZztl)) 2 0 along the whole path. It should be noted that Re V(x) + -cc when x + COk 

in every sector k (or E )  of the SG except the sector n + 2 where Re V(x) + +CO. 

Both the forms ( A l . l )  and (3) represent the same solutions to the SE in the 
corresponding sectors of the Stokes graph in figure 2 .  Let us note also that each 
solution to the SE can be given holomorphic dependence on the energy E by multiplying 
it by suitable constant c ( E ) .  The main difference between the forms (Al.1) and (3) 
is that this holomorphic dependence is explicitly given in the supersymmetric form 
(Al . l )  in contrast to the FF form (3) where such a holomorphic dependence is 
completely obscure. Using the forms (Al . l )  one can easily show that &(x),  k =  
1, . . . , n + 2, can be chosen as entire functions of E. Namely, the coefficients 112rt1)(~),  



658 S Giler, P Kosin'ski, J Rembielin'ski and P Mailanka 

(A1.5) 

which prove the holomorphicity of each series in (Al.1) in the whole complex E plane 
for /h i> 0. However, one should have in mind that by changing E in the E plane one 
also changes the Stokes graph and the corresponding solutions (Al . l )  should follow 
these changes. 

Obviously, the solutions (Al . l )  are not in general appropriate for calculations in 
the limit A + 0. But they appear to be extremely useful in the specific case E = 0, 
because of the obvious abbreviations of the series in (Al . l ) ,  These enable us to obtain 
in this case the explicit expressions (21) and (22) for the matrices A: and A: respectively. 
Since the method of obtaining the expressions (21) is obvious we sketch only the 
corresponding way for the expressions (22). To get, for example, we proceed 
as follows. From (8) we have 

(A1.6) 

Using (Al . l )  for E = O  we arrive at 

-- daOk (A1.7) 
d E  

On the other hand the first term in the square bracket in (A1.7) can be calculated with 

[ d In(Ck/Ck+i) 1 +- 2 ( Ii3J1(wi;Ti-) - Zi3)(a3m) 
d E  E=O h 2  ZYJl(") IYY") - CY; 
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the help of the solutions (17), to get 

659 

(A1 3) 

(A2.4) 
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where Dnil = ( B ~ + 1 ) 1 2 .  The expression (25) for Eo now follows directly from (A2.2)- 
(A2.4). 

Appendix 3 

The correction A to Eo can be estimated by noticing that it arises due to neglecting 
the third term in (15). Keeping this term in (15) and putting there E = Eo+A, where 
Eo is given by (16) we get for A the result 

n+1 

( k = l  
c [A:. . . AL. .  . A:A;+, -A;+,A?. . . AL..  . A:]lz 

n + l  

+ 4 ~ ,  [ A Y .  , . A; . . . A ; .  . . A;A:+~ 
k , / = l  
k < /  

- 1  

-A:+,A:. . .A:. . . A : .  . . Anil2) . (A3.1) 

However, we are not going to perform detailed calculations in (A3.1) to explicitly 
check its validity (i.e. that IA/EoJ << 1). We are convinced about the smallness of (A3.1) 
since the assumption that IEo/[hV“(z;)]( is small (for any z:) is confirmed by (30) 
where it is determined by the quantity 

exp[-(2/h)(V(zt)  - V(zk,))l. (A3.2) 

For the quantity (A3.2) to be small requires the following relation to be satisfied: 

h << 2( V(zZ-,) - V(Zi)). (A3.3) 

However, (A3.3) is exactly the condition which controls the validity of the approxima- 
tions (26) and (27). Namely, if (26) and (27) are to be good the second terms in their 
asymptotic expansions in h for h + O  have to be much smaller than the first terms. 
Thus, for example, for the integrals I k  in (26) this condition gives 

h << 161 V”(z;)12// V‘4)(zi)+j[ V(3)(zG)]2/ V‘(zi)l 

= I V”(Zi)l( ZZ-1 - z i ) 2  = V( ZC-1) - V( z,) (A3.4) 

where, in order to make the two last steps, we have made use of the obvious approxima- 
tions 

V‘3)(z,)-[ V”(zJ- v”(z;-,)]/[zi-zZ-l] 

-2V’(zi) / [z ,  - Z:-J 

and 

v‘4’(z;) = [ V‘3)(ZJ - v‘”(z:- ,)]/[z~-z~-l]  

e 2 v ( 3 ) ( ~ i ) / [ ~ i  - ~2-11  4v”(Z,)/[Z; - Z:-I]~. (A3.5) 
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